

Some Motivation

- Why do we separate signals?
 - I don't really know ...
- Is there an all-conquering algorithm?
 - I suspect, not really ...
- So why are you working on both of the above Paris?
 - It's a good exercise for what's to come

Outline

- Low-rank models
 - Learning to listen
- Nearest subspace approaches
 - Using data, not fancy algorithms
- Taking advantage of semantic information
 - Explaining mixtures, not decomposing them

How do we deal with mixtures?

- We find coherent structure
 - We can mimic humans
 - Or we can use statistics

Learning what to separate

We cannot make up data, we need something to learn from

Describing sounds

- A probabilistic interpretation of the spectrum
 - Why?
 - We don't care for scale and phase
 - Allows us to perform sophisticated reasoning

The space we deal with

These distributions live in a simplex

The space we deal with

These distributions live in a simplex

Modeling one sound

Use a dictionary representation

- lacksquare z is the index of the dictionary
- Everything is a "distribution"
- We can estimate dictionary/weights using EM

For the matrix inclined

It's a linear transform

Huh?

Represented as frequency distributions

- Each column is normalized
 - Each column is now $P_t(f)$

A 2-element dictionary approximation

Complex sounds = large dictionaries

Frequency distributions capture spectral character

Or we can see this as

- Different areas of the simplex are different "sounds"
 - Learned dictionary elements form convex hulls around them

Modeling mixtures

A mix of two normed spectra lies on connecting subspace

Two source mix using dictionaries

Huh again?

A problem

Convex hulls are a bad idea, sounds can overlap

Nearest subspace search

- Search for all possible solutions given training data
 - i.e. exemplars training

The bad news

Very high computational complexity

- $lacksquare M^N$ searches per query
 - lacksquare For N sources and M training data points
- 8 min, 5 sources \rightarrow 206,719 training data points
- \blacksquare 206,719⁵ = 377,486,980,238,462,848,824,329,599 searches
 - For each input spectrum!

Approximate algorithms

- Somewhat faster search, unrealistic memory requirements
 - A few Petabytes

Avoiding the search

We can still use the previous model

 $\ ^{\blacksquare}$ If we force weights $P_t(z)$ to be sparse we approximate the nearest subspace search

Enforcing sparsity

- The hard way: Entropic priors
 - We can tune each distribution's entropy
 - For sparse $P_t(z)$ we minimize its entropy
 - Pain in the @#\$!
- The easy way: Maximum ℓ_2 -norm
 - Since $0 \le P_t(z) \le 1 \max \ell_2$ -norm results in sparsity
 - Corresponds to Simpson's diversity index
- Both plug seamlessly in EM estimation

Computation gains

 Proposed method is substantially faster for a realistic number of training data (> 1,000)

How this looks

Finds points whose connecting subspace passes closest to the observed mixture point

And some results

- TIMIT speech mixes
 - ~20dB SIR on average
 - ~30dB SIR with post-process [⊕]

Extracted male speech

By a lot!

A practical extension

- We can't know all sources
 - But we usually know one (target or interference)
- All mixing problems are binary
 - Target vs. all else
- We need to learn extra bases
 - Describe all that we don't know
 - Straightforward extension

In practice

Selective parameter updates

Fun things to do

More fun things

Smart Audio User Interfaces

Paris Smaragdis, University of Illinois Gautham Mysore, Adobe Systems Inc.

But the objective is not to separate!!

- Source separation is a useless pursuit
 - There is almost never a reason to separate
- The real holy grail:
 - Understand mixtures, don't separate them
- Harder proposition, and rather unexplored

Making Direct Use of Exemplars

- Polyphonic pitch tracking
 - Difficult mixture problem
- Some observations
 - It can be learned, it shouldn't be user-specified
- We can adapt what we've done to do so
 - We should avoid to separate!

Mono pitch tracking by example

Representation and matching

- Nearest Neighbor match
 - Find closest spectrum
 - Use neighbor's pitch tag

Normalized warped spectrograms

Frequency

- Provide gain invariance
- Clarify harmonic structure

How well does that work?

- Proposed pitch tracking accuracy
 - Error mean μ = 0.02 Hz
 - Error deviation σ = 1.1 Hz
- With popular pitch trackers
 - Error mean μ = 0.1 Hz
 - Error deviation $\sigma = 1.2 \text{ Hz}$

- So we're on to something
 - But ...

The polyphonic case

- Nearest neighbors are insensitive to additivity
 - Therefore can't resolve mixture sounds
- For mixtures we have to search for the nearest subspaces
 - Aha! We know how to do that!

Nearest Neighbor Search

- Untagged input
- Pitch-tagged data

Nearest Subspace Search

Dealing with a duet

Training on two instruments

Duet results

Still works well

Pitch error stats: μ = 0.003 Hz, σ = 2.05 Hz

A more beefy example

- Wind quintet recording
 - Bassoon, Clarinet, Flute, Horn, Oboe

Training data

- 7m41s per source → 198,535 training vectors
- Removing unpitched vectors → 50,000 training vectors

Test data

- 1m10s of simultaneous performance \rightarrow 6,000 input spectra
- Data tested as duet, trio, quartet and quintet

Ratio of true vs. estimated pitch

Zooming in

- Most errors are "human"
 - Transition problems
 - Occasional confusion with other instruments
- Correct over majority samples of a note

What happened here?

Input:

- Some listening experience
- Mixture of five sounds

Output:

- Pitch values for each instrument (dictionary elements used)
- Kind of instrument (dictionary elements again)
- Amplitude of each source (presence of these elements)

What more is there to do?

No need to separate

"Human"-ish side effects

- Graceful degradation with increasing number of sources
 - Duets easier than trios, easier than quartets, ...
- Can "pitch track" pitch-less sounds
 - Inharmonic, quasi-periodic, etc. ...
- The more you know the better you do

A more realistic take

- Just as before, we can't know everything
 - But we know something
- Semi-exemplar learning
 - Mix exemplar model with basis decomposition
- Applies to target/background cases
 - Which are most of the interesting cases anyway

Step 1. Learn the target source

- Like before, each exemplar comes with feature labels
 - In this case pitch, can also be phoneme, stress, etc.
- We also learn temporal dynamics
 - How exemplars/bases appear in time
 - Also can apply for features too
- Use a transition matrix for z

$$P(z_{t+1} \mid z_t)$$

Step 2. Learn the rest from a mixture

- Keep target exemplars fixed
 - Adapt a new set of bases, while obeying transitions

Explain mixture as target + "rest"

We don't care about "rest" accuracy

Use pitch from exemplars

Same as before

Example pitch tracking

- Results in very accurate target following
 - In a challenging and highly correlated case

Training data Mixture

Delving deeper in temporal dynamics

- Previous model was a linear predictor of sorts
 - Short-term effects, minimal structure
- Extending this idea to stricter models
 - Hidden Markov Model formulation

- Can come in many flavors
 - Markov Model Selection
 - Non-Negative HMMs

One last example

- Structured speech mixtures
 - Each speaker follows a language model
 - i.e. we hear words in sentences that make sense

- Use an HMM of course
 - Encode domain structure knowledge
 - Structured model replaces exemplars

The "non-negative" HMM

Temporal model using exemplars/bases

Non-factorial learning

- State model additivity results in decoupled chains
 - Fast state estimation, doesn't require factorial model

Results on the Speech Separation Challenge

- Yes, we can separate, but we don't have to!
 - HMM state paths transcribe speech
 - Results are quite competitive

My parting messages

Don't separate!

Separation algorithms are laying the foundation for mixed signal processing and analysis, treat them as such!

My parting messages

Don't separate!

Separation algorithms are laying the foundation for mixed signal processing and analysis, treat them as such!

Keep separating!

■ We're learning a ton of new things, that's great! ©

References

- Smaragdis, P. 2011. Approximate nearest subspace representations for sound mixtures. In Proceedings International Conference on Acoustics, Speech and Signal Processing (ICASSP). Prague, Czech Republic, May, 2011
- Mysore, G., Smaragdis, and B. Raj. 2010. Non---negative hidden Markov modeling of audio with application to source separation. In 9th international conference on Latent Variable Analysis and Signal Separation (LCA/ICA). St. Malo, France. September, 2010
- Smaragdis, P. and B. Raj. 2010. The Markov selection model for concurrent speech recognition. In IEEE international workshop on Machine Learning for Signal Processing (MLSP). Kitilä, Finland. August 2010
- Smaragdis, P., M. Shashanka, and B. Raj. 2009. A sparse non---parametric approach for single channel separation of known sounds. In in Neural Information Processing Systems. Vancouver, BC, Canada. December 2009
- Smaragdis, P. 2009. User guided audio selection from complex sound mixtures. in the 22nd ACM Symposium on User Interface Software and Technology (UIST 09). Victoria, BC, Canada, October 2009
- Shashanka, M.V., B. Raj and P. Smaragdis, 2008. Probabilistic Latent Variable Models as Non---Negative Factorizations. In special issue on Advances in Non---negative Matrix and Tensor Factorization, Computational Intelligence and Neuroscience Journal. May 2008
- Shashanka, M.V., B. Raj, P. Smaragdis, 2007. Sparse Overcomplete Latent Variable Decomposition of Counts Data. In Neural Information Processing Systems (NIPS), Vancouver, BC, Canada. December 2007
- Smaragdis, P., B. Raj, and M.V. Shashanka, 2006, A probabilistic latent variable model for acoustic modeling, Advances in models for acoustic processing workshop, NIPS 2006
- Smaragdis, P. Component based techniques for monophonic speech separation and recognition, in "Blind Speech Separation", S. Makino, T-W.Lee and H. Sawada (eds.) Blind Speech Separation, Springer.