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Some Motivation

Why do we separate signals?
| don’t really know ...

Is there an all-conquering algorithm?
| suspect, not really ...

So why are you working on both of the above Paris?
It’s a good exercise for what’s to come
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Outline

Low-rank models
Learning to listen

Nearest subspace approaches
Using data, not fancy algorithms

Taking advantage of semantic information
Explaining mixtures, not decomposing them
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We find coherent structure
We can mimic humans
Or we can use statistics

Frequency




Learning what to separate
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We cannot make up data, we need something to learn from

p

Original speech

Original interference

N

Training\

~

data

Training speech
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A probabilistic interpretation of the spectrum

Why?

We don’t care for scale and phase

Allows us to perform sophisticated reasoning
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These distributions live in a simplex

{0,0,1}




These distributions live in a simplex
P(f)

[0.1,0.8,0.1]




Modeling one sound

Use a dictionary representation

ZPf\z
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Input spectra Dictionary elements Weights

2 is the index of the dictionary
Everything is a “distribution”
We can estimate dictionary/weights using EM



For the matrix inclined '

It’s a linear transform

B(f) = P(f | 2)P(2)
A
Input spectra Dictionary elements Weights
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Huh?
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Represented as frequency dlstrlbutlons

Each column is normalized
Each column is now P,(f)

Normalized spectra
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A 2-element dictionary approximation
P(f)

500
450
400

350

b i

N W
o
o

()
o

Frequency bin

N
o
o

150

100

50

50 100 150 200 250 300 350 400

P(f ’ Z) Time frame

[ ]







T

CS & ECE DEPTS.
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Or we can see this as

Different areas of the simplex are different “sounds”

Learned dictionary elements form convex hulls around them

Vv Sourcea
A Sourceb
@ Dictionary element for a

@ Dictionary element for b
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Modeling mixtures

A mix of two normed spectra lies on connecting subspace

Source a

Two source mix Two source mix using dictionaries
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Huh again?

Learn chime dictionary

Learn speech dictionary

Mixture of speech and chimes

SSRSSPO! T TPITPRRRR T FRRRRET | B
T e T VPPN
N NS e A S et
R AR st e Lo SHUND WE

—— e WA N e

-

DA NI s
s o N S
e WA N e e

(%}
)
£
<
O
o
<
e}
<
S
[
8
A\

Extracted speech

EEE 3
41114
) 4
« 4
3
3
11411
1 1
1113
4
144 )
q
{
44
L
4 4]
hl
P
9 1
1 3 4
Q
<
..Ls
>3
c <
c.D>
c 9
<
aW
Q
—

Extracted chimes

g



T

CS & ECE DEPTS.
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

A problem

Convex hulls are a bad idea, sounds can overlap

A Source A
v Source B
O Mixture
- - =Convex Hull A
----- Convex Hull B
X Estimate for A
+ Estimate for B

O Approximation
of mixture

- ="
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Nearest subspace search

Search for all possible solutions given training data

i.e. exemplars training

Vv Source x
A Sourcey

O Mixture m




The bad news

Very high computational complexity
MW" searches per query
For N sources and M training data points
8 min, 5 sources - 206,719 training data points
206,719~ =377,486,980,238,462,848,824,329,599 searches
For each input spectrum!

Approximate algorithms
Somewhat faster search, unrealistic memory requirements
A few Petabytes



Avoiding the search

We can still use the previous model

F(f)=)_P(f|2)F(2)
S AN

Input spectra Consolidated training data Sparse weights

If we force weights P,(z) to be sparse we approximate the
nearest subspace search



Enforcing sparsity

The hard way: Entropic priors
We can tune each distribution’s entropy
For sparse P,(z) we minimize its entropy
Pain in the @#S!

The easy way: Maximum ¢,-norm
Since 0 £ P,(2) £ 1 max £,-norm results in sparsity
Corresponds to Simpson’s diversity index

Both plug seamlessly in EM estimation
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Computation gains

Proposed method is substantially faster for a realistic
number of training data ( > 1,000)

Computation required
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How this looks

Finds points whose connecting subspace passes
closest to the observed mixture point

Using learned dictionaries Using exemplars
A Source A Source A
v Source B Source B
O Mixture Mixture

- - -Convex Hull A
‘‘‘‘‘ Convex Hull B
X Estimate for A
-+ Estimate for B

0O Approximation
of mixture

A
v
a
X Estimate for A
-+ Estimate for B

Approximation
of mixture
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And some results

TIMIT speech mixes
~20dB SIR on average

30

201

~30dB SIR with post-process =

Speech and speech @

Extracted female speech @
Extracted male speech @

Exemplars beat dictionaries

By a lot!
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Signal to Interference Ratio

5 10 20 40 80 160 320 |Inf Inf+Post
z

Signal to Distortion Ratio
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A practical extension

We can’t know all sources

But we usually know one (target or interference)

All mixing problems are binary @ Torgetdictionary P(f 1 2)

[] Observed mixtures Pe(f)
Target vs. all else

Implied competing
sources subspace

We need to learn extra bases
Describe all that we don’t know —————
Straightforward extension
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In practice

Selective parameter updates

___________________

___________________

Learn extra frequency elements
that explain other sounds

Target or interference example ixed e ____ Mixture recording
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Fun things to do

Original drum loop P
Extracted layers

| Music layer A
AY
~ whooN
/ . W 4
No tambourine \‘\‘ \\\ WO—H-FQ—FH«—
S \ \‘ \\
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No congas v \
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Voice layer

s ‘V B W S TEuNa Naa.
Remixer ,

Selective pitch shifting

Soprano layer

Piano + Soprano l |' " l l ‘ Remixed layers
<’ ) \é *WM
N
. 2 N 7 ‘ . ’
A o*

Piano layer
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More fun things

Smart Audio User Interfaces

Paris Smaragdis, University of lllinois
Gautham Mysore, Adobe Systems Inc.




Source separation is a useless pursuit

There is almost never a reason to separate

The real holy grail:
Understand mixtures, don’t separate them

Harder proposition, and rather unexplored
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xemplars
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Making Direct Use o
Polyphonic pitch tracking
Difficult mixture problem

Some observations

It can be learned, it shouldn’t be user-specified

We can adapt what we’ve done to do so
We should avoid to separate!
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Mono pitch tracklng b example

Training data Data to pitch track
f..(1) £y (t)

Frequency
Frequency
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Input

1

Nearest Neighbor match

Find closest spectrum

Il

Use neighbor’s pitch tag

Normalized warped spectrograms l l
Provide gain invariance M
1
. . 1
Clarify harmonic structure £
S ="
b

100 200 300 100 200 300
t I P
Training spectra Training pitch tags
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Proposed pitch tracking accuracy

pyl(t)
Error mean u = 0.02 Hz | | —
. . _ 190+ R PP P o
Error deviation 0=1.1 Hz 5 5 ® Proat
180} - S o Estimate |
. | e L) s
With popular pitch trackers . | T e . e
Error mean u =0.1 Hz T . C‘.ﬁ @D ; }
160 - SRR SRR S o
Error deviation 0 = 1.2 Hz | | | |
Ve =
So we’re on to something 1or () S SR o
But ... > B W
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The polyphonic case

Nearest neighbors are insensitive to additivity
Therefore can’t resolve mixture sounds

For mixtures we have to search for the nearest subspaces
Aha! We know how to do that!

Nearest Neighbor Search Nearest Subspace Search
O
@ O
O O O
o° -
O Ol
O O

O Untagged input
O Pitch-tagged data



Dealing with a duet

Hz

Training on two instruments

Frequency
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Duet results

Still works well
Pitch error stats: u =0.003 Hz, 0 = 2.05 Hz

py1(t) ﬁy2(t)
| | N ) =
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A more beefy example

Wind quintet recording
~
Bassoon, Clarinet, Flute, Horn, Oboe

Training data
7/m41s per source - 198,535 training vectors
Removing unpitched vectors - 50,000 training vectors

Test data
1m10s of simultaneous performance - 6,000 input spectra
Data tested as duet, trio, quartet and quintet
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Ratio of true vs. estimated pitch

Trio py/py

I S o=109.5 Hz|

pn=-32.6 Hz

t= 49 sec

Quintet py/Dy

u=-42.8 Hz
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Zooming in

Most errors are “human”
Transition problems
Occasional confusion with other instruments

Correct over majority samples of a note

150

z

L 1000
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What happened here?

Input:
Some listening experience
Mixture of five sounds

Output:

Pitch values for each instrument (dictionary elements used)
Kind of instrument (dictionary elements again)
Amplitude of each source (presence of these elements)

What more is there to do?
No need to separate
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“Human”-ish side effects

Graceful degradation with increasing number of sources
Duets easier than trios, easier than quartets, ...

Can “pitch track” pitch-less sounds

Inharmonic, quasi-periodic, etc. ...

The more you know the better you do



A more realistic take

Just as before, we can’t know everything

But we know something

Semi-exemplar learning
Mix exemplar model with basis decomposition

Applies to target/background cases

Which are most of the interesting cases anyway
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Step 1. Learn the target source

[ -

Like before, each exemplar comes with feature labels
In this case pitch, can also be phoneme, stress, etc.

We also learn temporal dynamics

. . @ Torget dictionary P(f | z)
How exemplars/bases appear in time

f Transition matrix P( Zy,q / z, )

Also can apply for features too

Use a transition matrix for 2
P(Ztﬂ ’ Zt)




L Ei‘“ ;:2', \: ; CS & ECE DEPTS. ]

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Step 2. Learn the rest from a mixture

Keep target exemplars fixed
Adapt a new set of bases, while obeying transitions

Explain mixture as target + “rest”

@ Target dictionary P(f | z)
We don’t care about “rest” accuracy

? Transition matrix P( z,, 1 | z;)
[] Observed mixtures Py( f)

Implied competing
sources subspace

Use pitch from exemplars
Same as before
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Example pitch tracking

Results in very accurate target following

Training data  Mixture

In a challenging and highly correlated case

Estimated P (a) P “(g) with C=0.0015

1 1 1 1 1
440 [ - e o o S o e - M-
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LU & o . S . Expected pitch | ]
S A T g o L
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Time (sec)



Delving deeper in temporaldynamics

Previous model was a linear predictor of sorts
Short-term effects, minimal structure

Extending this idea to stricter models
Hidden Markov Model formulation

Can come in many flavors

Markov Model Selection
Non-Negative HMMs
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One last example

Structured speech mixtures
Each speaker follows a language model

i.e. we hear words in sentences that make sense

Use an HMM of course
Encode domain structure knowledge
Structured model replaces exemplars
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The “non-negative” HMM
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Temporal model using exemplars/bases
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Non-factorial learning

State model additivity results in decoupled chains
Fast state estimation, doesn’t require factorial model
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Results on the Speech Separatlon Challenge

" Yes, we can separate, but we don’t have to!
" HMM state paths transcribe speech
" Results are quite competitive
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My parting messages

Don’t separate!

Separation algorithms are laying the foundation for mixed
signal processing and analysis, treat them as such!



My parting messages

Don’t separate!

Separation algorithms are laying the foundation for mixed
signal processing and analysis, treat them as such!

Keep separating!
We're learning a ton of new things, that’s great! ©
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