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ABSTRACT

In this paper we introduce a new Markov model that is capable of
recognizing speech from recordings of simultaneously speaking a
priori known speakers. This work is based on recent work on non-
negative representations of spectrograms, which has been shown to
be very effective in source separation problems. In this paper we
extend these approaches to design a Markov selection model that
is able to recognize sequences even when they are presented mixed
together. We do so without the need to perform separation on the
signals. Unlike factorial Markov models which have been used
similarly in the past, this approach features a low computational
complexity in the number of sources and Markov states, which
makes it a highly efficient alternative. We demonstrate the use
of this framework in recognizing speech from mixtures of known
speakers.

1. INTRODUCTION

Speech recognition of concurrent speakers is a significantly hard
task. Although contrived as a scenario, its solution can be of great
use to noise-robust speech recognition and can provide insight on
how to deal with some of the hardest problems in acoustic sensing.
Current models for speech recognition cannot be easily extended
to deal with additive interference, and often need to be comple-
mented with a separation algorithm that preprocesses the data be-
fore recognition takes place. This is often a risky combination
since the output of a separation algorithm is not guaranteed to be
recognizable speech, at least not by a speech recognition system.

A different temporally-sensitive approach characterizes the speech

from all concurrent sources (speakers) by HMMs. The sum of the
speech is then characterized by a factorial HMM, which is essen-
tially a product of the HMM s representing the individual sources.
Inference can be run on this factorial HMM to determine what was
spoken by individual speakers. The problem of course is compu-
tational complexity: the number of states in the factorial HMM
is the product of the states in the HMMs for individual sources,
i.e. is polynomial in the number of concurrent sources. The time
taken for inference is polynomial in twice the number of sources,
requiring complicated variational methods to make it tractable.

In this paper we introduce a Markov selection model coupled
with a probabilistic decomposition that allows us to recognize ad-
ditive speech mixtures in time that is /inear in the number of con-
current sources. We make use of speaker-dependent models, which
when used on speech mixtures can obtain reliable estimates of all
the spoken utterances. In the following sections we describe an
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additive model which has been used in the past for source separa-
tion, then describe how it can be incorporated into an HMM-based
speech recognition framework to form the proposed Markov selec-
tion model. Finally we present results from experiments based on
the ICSLP 2006 speech separation challenge data [1].

2. ADDITIVE MODELS OF SOUNDS

Recently we have seen wide use of non-negative factorization meth-
ods with applications to source separation from single channel
recordings ([2, 3, 4]). In this paper we will make use of such a
model and adapt it for use in a speech recognition system. Let
us begin by reviewing how these models work and also setup the
notation used henceforth.

Many modern source separation methods use prior knowledge
of the sources in a mixture. A common scenario is one where for
two speakers, speaker a and speaker b, we have training recordings
z?(t) and 2®(t), and a mixture m(t) = y*(t) + y°(t). Our goal
is then to use the information extracted from z*(¢) and z°(t) to
estimate 3 (¢) and y®(t) by observing only m(t).

A very efficient and capable approach to perform this task is
by using non-negative spectrum factorization methods. Here we
will use a probabilistic version of these techniques which allows
us to later incorporate it in a Markov model. In this setting, we
extract the spectral magnitude of the observed signals at regularly
sampled analysis frames:

X, (f) o« || DFT(2(T(r = 1) + 1,..,Tr)|l, (1)

where T’ is the size of the analysis frame we choose to use. Doing
s0 we can obtain X¢ and X?, the magnitude spectra for signals
from speakers a and b. We model magnitude spectra as histograms
drawn from a mixture of multinomial distributions. This leads to
the following latent variable model:

M
X (f) ~ Y P(fl2)Pr(2), ()

where the symbol ~ represents drawing from a distribution, P(f|z)
represents the 2" component multinomial and P, (z) is the prob-
ability with which it is mixed to produce X, the magnitude spec-
trum vector for the 71 analysis frame. M is the total number
of component multinomials. The component multinomials (which
we will refer to as “multinomial bases”) P(f|z) for any speaker
and the corresponding mixture weights P-(z) for each spectral
vector can now be estimated using an Expectation-Maximization
algorithm.

This is essentially a simplified pLSI model [5], but looking
past its probabilistic formulation we note that P(f|z) is in fact



a normalized spectrum. The set of all multinomials can thus be
viewed as a dictionary of spectral bases, Equation 2 can be viewed
as an algebraic decomposition and M as the rank of this decom-
position. Pr(z) can be seen as weights that tell us how to put
the dictionary elements together to approximate the input at hand.
Thus Equation 2 can be written as:

M
X (f) = X-(f) = g- Y_ P(fl2)P:(2), 3)

where g- = >7, X-(f). The scalar g- ensures that the eventual
approximation is scaled appropriately to match the input. This
can also be thought of as a non-negative matrix factorization [6]
in which P(f|z) and P-(z) correspond to the two non-negative
factors.

There are two key observations we need to make in order to be
able to extract y°(t) and y°(t) from m(t). The first one is that in
general it will hold that:

M- (f) = Y (f) + Y2 (f). 4)

This means that the magnitude spectrogram of the mixture of the
two sources will be approximately equal to the sum of the mag-
nitude spectrograms of the two sources. Although due to phase
cancellations we cannot achieve exact equality, this assumption
has been used with great success so far and it is largely correct for
most practical purposes.

The second observation is that the multinomial bases P*( f|z),
that we can estimate from X, can describe Y.* better than the
bases P°(f|z) estimated from X2, and vice versa, i.e.:

o M
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and vice-versa. Where Dkr,(+) denotes the Kullback-Leibler di-
vergence, P*(f|z) and P®(f|z) are the dictionaries learned from
z and z®, and each P, (z) is the optimal weight distribution for
approximating Y* given each of the two dictionaries.

These two observations then allow us to assume that the ob-
served mixture M- (f) can be explained well using both dictionar-
ies P°(f|z) and P°(f|2):
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for two optimally selected instances of P (z). In addition to be-
ing well explained, we would expect to see most of the energy of
each speaker being represented by the part of this summation that
includes the multinomial bases for that speaker.

For both the dictionary learning and the weight estimation
parts, we can use the Expectation-Maximization algorithm to es-
timate any of the quantities in the above equations. The update
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Fig. 1. (a) A graphical representation of a conventional HMM.
The state at each time is dependent on the state at the previous time
and generates the observation. Dotted arrows indicate injection of
parameters. (b) The proposed Markov selection model. The state
selects the multinomial bases that generate the observation. The
bases are “mixed” by a weight w. This additional dependence is
highlighted by the dotted outline.

equations for any dictionary element P(f|z) and its correspond-
ing weight P;(z) for an input X, (f) are:
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where:
Pr(elf) = 2B ©)
> Pr(z)P(f12')

The dictionary of multinomial bases for each of the sources
may be learned from separate training data. These can be used
to decompose mixed recordings (i.e. to find the mixture weights
P7(z) for all bases). Once the decomposition in Equation 6 is
achieved, we can then recompose separately Y.*(f) and Y (f)
and then invert them back to the time domain to obtain our sep-
arated estimates of y°(t) and y°(t). The performance of this ap-
proach can vary depending on various details we do not present
here, but in its better forms this has been shown to achieve sup-
pression of unwanted speakers up to 20dB or more [4].

However since the objective of this paper is to recognize as op-
posed to separate, it would be more beneficial to use direct recog-
nition using this model as opposed to separating and then recogniz-
ing. To do so we will incorporate this model into a hidden Markov
model structure as shown in the following section.

3. THE MARKOV SELECTION MODEL

3.1. Model definition

In this section we will introduce an application of the model and
the observations made in the previous section as applied on tem-
poral data. A conventional Hidden Markov Model is a doubly-
stochastic model comprising an underlying Markov chain and ob-
servation probability densities at each state in the chain. The pa-
rameters characterizing the model are the initial state probabili-
ties I1 = {P(s)Vs} representing the probabilities of beginning a

Markov chain at each state, a transition matrix T = {P(si|s;)Vss, s;}

that represents the set of all transition probabilities between ev-
ery pair of states, and a set of state output distributions B =



T

Fig. 2. A two state left-to-right Markov model is shown at the top.
Each state selects one pair of multinomial bases. The two bases
that describe each state are shown left and right as P(f|z:). The
bottom of the figure displays the input X (f) that this model can
best describe. The left part being best described as a mixture of
P(f|z1) and P(f|z2) and the right part by P(f|z3) and P(f|z4).

{P(z|s)Vs} representing the probability of generating observa-
tions from each of the states. The graphical model for the HMM is
shown in Figure 1.a.

The model we propose extends this conventional model as
shown in Figure 1.b. Instead of states generating observations di-
rectly, they generate the labels z; = {z} of sets of multinomial
bases that will produce observations. Thus, the output distributions
of the HMM are B = {P(z|s)Vs}. To generate observations,
the multinomial bases in z, are “mixed” according to weights w. .
The vector of weights for all bases, w, which actually represents
a multinomial over z, is drawn from a distribution which, for this
paper, we will assume is uniform. Only the bases selected by the
state (and their weights, appropriately normalized) are used to gen-
erate the final observation. Since the underlying Markov process
contributes to data generation primarily by selecting bases, we re-
fer to this as the Markov Selection Model. Figure 2 illustrates the
generation process with an example.

A key aspect of the above model is that the weights w_ are not
fixed but are themselves drawn for every observation. Further, the
draw of the weights themselves is not dependent on the state in any
manner, but is independent. The actual probability of an observa-
tion depends on the mixture weights. Thus, in order to compute the
complete likelihood of an observation we must integrate the prod-
uct of the weight-dependent likelihood of the observation and the
probability of drawing the mixture weight vector over the entire
probability simplex on which w resides.

We note that the primary use for this model is that of infer-
ring the underlying state sequence given this model. To do so, it is
sufficient to determine the Markov-chain-independent a posteriori
probabilities P;,,q(s|z) of the states, and utilize those for estimat-
ing the state sequence; the actual observation probability P(z|s)
is not required. Indeed, this observation is also utilized in several
approaches to HMM-based speech recognition systems where the
Markov-chain-independent a posteriori probabilities of states are
obtained through models such as Neural Networks [7] for infer-
ence of the underlying word sequence.

As a first step, instead of explicitly integrating over the space

of all weights to obtain the likelihood of the observation, we will
use the Markov-chain-independent a posteriori state probability
for all inference and learning of Markov chain parameters. Sec-
ondly, we will approximate the a posteriori state probability by
the sum of a posteriori most likely mixture weights for the Multi-
nomial bases selected by any state. I.e. we use the approximation:

P(z|X,) ~ P(z|X,) = arg mz}xP(z/|:r) =P (z) (10

Poa(sle) = > P(2|X;)= > Pr(z) (1)
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where P;(z) is the same value referred to in Equation 8. In other
words, we derive the mixture weights that maximize the likeli-
hood of the portion of the graph enclosed by the dashed outline
in Figure 1.b. We do so without reference to the Markov chain
and utilize them to compute the markov-chain-independent condi-
tional probabilities for states, which will be used in the inference.
This effectively factors the observation dependency and the state
dependency of the model.

Thus, one of the advantages conferred by the approximation is
that the model of Figure 1.b gets factored in two parts. The first
(enclosed by the dashed outline in the figure) is essentially a pLSA
model that obtains w,,; and thereby P-(z). The second, given
the P-(z) computed from the first part, is effectively an HMM
with P;(z.) as state output densities. Inference and learning can
run largely independently in the two components, with the pLSA
component employed to learn its parameters, while the HMM can
use the standard Baum-Welch training procedure [8] to learn the
Markov chain parameters II and T. The two components must
however combine for learning the multinomial bases P(f|z).

3.2. Parameter estimation

We train this structure by appropriately adapting the Baum-Welch
training procedure [8] to use the new state model. Due to space
constraints in this format, we present the learning process at a su-
perficial level. In the first step we compute the “emission” prob-
ability terms for each state. Since this is locally also a maximum
likelihood estimate we estimate an intermediate value of the opti-
mal weight vector by:
Pr(2)P(fl2)

Pr(2lf) = (12)
> Pr(Z)P(f12')
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Note that the above estimation does not refer to the underlying
Markov chain or its states; all computations are local to the compo-
nents within the dotted outline of Figure 1.b. Once P;(z) has been
obtained, we compute the posterior state probability P(s|X;) =
P;(zs) using Equation 11.

The forward backward algorithm can then be employed as in
conventional HMM. Forward probabilities c, backward probabili-
ties 3 and state posteriors -y are given by the recursions:

ar(s) = ar1(s")Tse Pr(2s)

13)
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Fig. 3. Model for producing a mixture of two sources. Each source
follows its own Markov chain. Each source’s state selects some
subset of multinomial bases. The mixture weights for all bases
(including both sources) are independently drawn. The final ob-
servation is generated by the weighted mixture of bases selected
by both sources.

In the Maximization step we need to estimate all the dictionary
elements P(f|z,4). To do so we use the state posteriors to appro-
priately weigh Equation 8 and obtain:

Dor Dosizen, Vr(8)Pr (2] f) XA (f)
ZT,Z/,S/:ZEZS/ ’YT(SI)PT(Z/“(‘)X"'(}C)

Here “s : z € zs” represents the set of states which can select
basis z. Update rules for transition matrix T and the initial state
probabilities are the same as with traditional HMM models.

The most prevalent problem we encounter during training is
that of strong local optima which can cause convergence towards
a poor solution. This can happen for example when the multino-
mial bases for the terminal state adapt faster towards explaining
the first few input time points. Since this is a potentially serious
problem we need to ensure that convergence of the dictionary ele-
ments is not too rapid so that there is a significant likelihood that
dictionary elements across states can switch if needed. This can be
easily achieved by imposing an “anti-sparsity” prior on the activa-
tion of the dictionary elements. We do so by using a Dirichlet prior
over the mixture weights for all P(f|z) with hyper-parameters o ;
slowly transitioning from 1.5 to 1 during training. This measure
ensures that we obtain consistent results over multiple runs and
that we do not converge on blatantly wrong local optima.

P(flz) =

15)

3.3. State Sequence Estimation

The procedure for computing the optimal state sequence, given all
model parameters, is straight forward. For each observation we
compute the emission probability for each state through the EM
estimation of Equations 13 and Equation 11. The Viterbi algorithm
can then be used to find the optimal state sequence.

The two examples in Figure 4 illustrate the results obtained,
both from the learning and the state sequence estimation. For
each example, a three-state model of the proposed architecture is
learned. We then obtain the optimal state sequence for each data
sequence using the model estimated from it. The state segmenta-
tions obtained are shown in the bottom plots of Figure 4. As we
can observe, the segmentation obtained is intuitive — each of the
states captures a locally consistent region of the data.

4. MODELING MIXTURES OF SOUNDS

The main advantage of the proposed model becomes apparent when
we use it to analyze the sum of the output of two separate pro-
cesses. Let X2(f) and X2(f) be two data sequences obtained

separately from two sources that are well modeled by the model of
Section 3. Let the actual observation X, (f) = X2(f) + X2(f).
Then it is relatively straightforward to show that the statistical
model for X (f) is given by Figure 3. As before, each of the
two sources follows its own independent Markov chain. The state
output distributions for each source are selector functions, as in
the case of the single source. The primary difference lies in the
manner in which the summed data are generated. An independent
process now draws a mixture weight vector that includes mixture
weights for all bases of both sources. The final observation is ob-
tained by the mixing of the bases selected by the states of both of
the sources using the drawn mixture weights.

The problem of estimating the state sequences for the individ-
ual sources is now easily solved. Using the same approximation
we use in Section 3.1 we first compute the optimal weights for all
bases using iterations of Equation 13. The iterations compute the
P, (z) for all bases from all sources. Once these are computed, the
Markov-chain-independent a posteriori state probabilities for each
of the states of the Markov models for both sources are computed
using Equation 11 as follows:

P(s|X) = 3" Pr(2) (16)
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where Xg) is the 7" source at time step 7, s is any state in the
Markov model for the i*" source and z; is the set of bases selected
by the state.

Remarkably, the model permits us compute the state emission
probabilities for the individual sources, given only the sum of their
outputs. The optimal state sequences for the individual source can
now be independently obtained by the Viterbi algorithm. As a
result, the complexity of this process, given K sources, each mod-
eled by N states is O(K N?), equivalent to performing K inde-
pendent Viterbi decodes. This is in contrast to conventional facto-
rial approach to modeling the mixture of multiple sources, where
the resulting model has N* states and Viterbi estimation of the
optimal state sequence requires O(N25) operations necessitating
complex variational approximations to simplify the problem.

Figure 5 illustrates the proposed procedure. The top plot is a
“mixed” data sequence composed as a sum of the two sequences in
Figure 4. Ordinarily in this situation we would have to use a facto-
rial Markov model which would consider all twelve possible com-
binations between both models’ states, and then obtain the most
likely state paths using a 2-d Viterbi search. Using the proposed
approach we obtain the individual emission scores for the states of
the individual HMMs for every time instant and obtain the optimal
state sequence independently for both sources. The obtained state
sequences are shown in the bottom plots of Figure 5. We note that
they are identical to the state sequences obtained from the isolated
sequences in Figure 4. Multiple runs over various inputs provide
similar results with only occasional and minor differences between
the states extracted from the isolated sequences and their sum.

5. RECOGNIZING MIXTURES OF SPEAKERS

In this section we present two experiments that demonstrate the
use of this model in speech recognition applications. We present a
small experiment that performs digit recognition on simultaneous
digit speaking by the same speaker, and a larger experiment based
on the speech separation challenge data [1].
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Fig. 4. Two input patterns (top figures) and their corresponding
state sequences (bottom figures) as discovered by the proposed
model.

5.1. A small scale experiment

In this experiment we use digit data from the speech separation
challenge corpus to illustrate the ability of this model to discover
sequences from speech mixtures. In this experiment we chose ten
utterances of five different digits from one speaker and we trained
an instance of the proposed Markov model for each digit. For sim-
plicity we used four states for all digits and three frequency distri-
butions for each state. As an input we used pre-emphasized mag-
nitude spectra from roughly 45ms windows. We then used an addi-
tional unknown utterance of each digit to construct a set of sound
mixtures containing one digit each. We analyzed these mixtures
using the pre-learned digit models and examined their estimated
likelihoods in order to discover which utterances were spoken in
the mixture. A representative example of these results is shown
for four mixture cases in Figure 6. The log likelihoods of the spo-
ken digits were significantly higher than the non-spoken digits and
from them we can easily deduce the contents of the recording.

In the next section we generalize this idea to a much larger and
more thorough experiment.

5.2. A large scale experiment

In this section we describe an experiment using the speaker sepa-
ration challenge data set [1]. We present results on both the task
set forth for this challenge, but also for full word recognition. The
data in this challenge were composed of mixture recordings of two
speakers simultaneously uttering sentences of a predefined struc-
ture. In the first case we evaluate the task is to identify a specific
word in the sentence uttered by the primary speaker, whereas in the
second case we attempt to recognize all words for both utterances.

The features we used were magnitude spectral features. We
used a time frame of about 30ms, and a frame advance of 15ms.
The magnitude spectra were preemphasized so that the higher fre-
quency content was more pronounced. We trained the proposed
model for each word and each speaker using the number of states
guidelines provided by the dataset documentation. We used one

Fig. 5. Sum of the patterns in Figure 4 and the extracted state
sequences as computed by the models learned on the isolated pat-
terns.
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Fig. 6. Estimated model log likelihoods evaluated on mixtures
of digits. Each subplot contains the log likelihoods of each digit
model for a different digit mixture as denoted above each plot. As
shown here the two highest log likelihoods coincide with the dig-
its that were spoken in that mixture, thereby providing us with the
digit recognition.

frequency distribution per state and trained each model for 500 it-
erations. The resulting models from each speaker were then com-
bined to form a larger Markov model which can model an en-
tire target sentence with equiprobable jumps between all candidate
words at each section. For each mixture sentence the speaker iden-
tities were provided in advance and the two Markov models de-
scribing all the possible utterances were used to estimate the most
likely state sequence for each speaker as described in the previous
section. The results of these simulations are shown in tables 1, for
the proposed task in the challenge, and 2 for the word recognition
rates for both of the simultaneous utterances. The SNR column
describes the amplitude difference between the primary and the
secondary speakers. As expected the louder the primary speaker is
the better results we achieve. The “Same speaker” column shows
the results when the two utterances were recorded from the same
speaker. This is the worst case scenario since the dictionary ele-
ments in our model will have maximal overlap and the state pos-
terior probabilities will be unreliable. We clearly see that in this
case the results are the lowest we obtain. The “Same gender” col-
umn describes the results when the two speakers were of the same



gender. This is a somewhat better situation since the will be less
overlap between the state dictionary elements and the results re-
flect that by being higher. Finally the even better case is when the
two speakers are of different gender, in which case there is a high
likelihood that dictionary elements will not overlap significantly,
thus we obtain the best results. The final two columns present the
average results of our proposed model and for a baseline compar-
ison, the “GMM Avg.” label presents the average results we ob-
tained using the same representation and a Gaussian state HMM,
while treating the secondary speaker as noise.

The overall results we obtain rank high in terms of previously
achieved results for this task [1], and come at a significantly lower
computational cost than other approaches due to the efficient de-
coding scheme we introduce.

SNR Same Same Diff Avg. | GHMM
speaker | gender | gender Avg.
6dB | 58.1% | 683% | 69.8% | 652% | 48.0%
3dB | 464% | 642% | 64.7% | 580% | 372%
0dB 327% | 539% | 60.5% | 48.6% | 29.4%
3dB | 21.7% | 448% | 53.0% | 393% | 20.8%
-6dB | 13.6% | 360% | 45.7% | 312% | 15.5%
-9dB 8.7% 315% | 37.0% | 252% | 12.3%

Table 1. Detailed task results using the proposed model

SNR Same Same Diff Avg.
speaker gender gender
Clean N/A N/A N/A 88%
6dB | 68%|32% | 80%|59% | 83%|70% | 77%|53%
3dB | 57%|42% | T7%|67% | 80%|76% | 71%|61%
0dB | 46%|53% | 68%|75% | 76%|80% | 63%|69%
-3dB | 35%|65% | 61%|80% | 71%|84% | 55%|16%
-6dB | 26%|74% | 53%|84% | 64%|86% | 47%|81%
-9dB | 21%|80% | 48%|87% | 57%|87% | 41%|84%

Table 2. Overall word recognition results using the proposed
model. Left percentages are denoting the correct recognition rate
for the primary speaker’s words, right percentages do so for the
secondary speaker.

An interesting point to make here is that the representation
that we used is balancing a tradeoff between mixture modeling
and recognition. The fine frequency resolution and linear ampli-
tude scale that we use aid in discriminating the two speakers and
facilitates the additivity assumption, but it also impedes recogni-
tion since it highlights pitch and amplitude variances. In contrast
to that, a speech recognition system would use a lower frequency
resolution that conceals pitch information but maintains spectral
shape, and would also use that representation in the log amplitude
domain so that subtle amplitude patterns can be easier to detect.
Selecting the proper representation is a process that involves trad-
ing off the ability to discriminate sources and the ability to recog-
nize, something which is application dependent.

Once the state transitions have been estimated from a mixture,
it is also trivial to perform separation of the constituent sources.
Since this operation is out of the scope of this paper we defer the
presentation of this experiment to future publications.

6. CONCLUSIONS

In this paper we introduced the Markov Selection Model, a new
statistical model which combines models used for source separa-
tion with a Markov structure. We demonstrate how this model can
learn and recognize sequences, but also perform recognition and
state estimation even when presented mixed mixed signals. Super-
ficially this model is similar to the one in [9], but at closer inspec-
tion provides a more extensive basis model and is substantially
different in estimation and inference. We formulate this model in
such a way that so that it allows us to perform state estimation on
mixed sequences with linear complexity in the number of sources.
This is a significant computational improvement as compared to
similarly employed factorial Markov models, and one that doesn’t
sacrifice performance by a noticeable amount. This structure can
also be represented as a Conditional Random Field, which can re-
sult in additional structural possibilities and a more straightforward
inference formulation, and it can also be used for solving source
separation and denoising problems. We anticipate to address these
possibilities in future work.
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