
User Guided Audio Selection from Complex Sound
Mixtures
Paris Smaragdis
Adobe Systems Inc.

ABSTRACT
In this paper we present a novel interface for selecting sounds
in audio mixtures. Traditional interfaces in audio editors pro-
vide a graphical representation of sounds which is either a
waveform, or some variation of a time/frequency transform.
Although with these representations a user might be able to
visually identify elements of sounds in a mixture, they do not
facilitate object-specific editing (e.g. selecting only the voice
of a singer in a song). This interface uses audio guidance
from a user in order to select a target sound within a mix-
ture. The user is asked to vocalize (or otherwise sonically
represent) the desired target sound, and an automatic process
identifies and isolates the elements of the mixture that best
relate to the user’s input. This way of pointing to specific
parts of an audio stream allows a user to perform audio se-
lections which would have been infeasible otherwise.

ACM Classification: H.5.5 [Multimedia Information Sys-
tems]: Sound andMusic Computing, H.5.2 [User Interfaces]:
Voice I/O

General terms: Algorithms, Human Factors

Keywords: Audio interfaces

INTRODUCTION
With the advent of user-friendly software to manipulate me-
dia, consumers today are presented with a wide variety of
tools with which to edit content they create, or content they
wish to experiment with. This trend has been partially fueled
by the incorporation of interfaces which allow users to intu-
itively interact with media. A user who wishes to remove
somebody from a photograph can approximately trace the
outline of that person and then automatically delete them. A
user who wants to change the color of the sky in a video can
scribble over the sky to identify that area and then specify the
new color for it. Especially in the imaging world, editing of
photographs and videos is by now a commonplace operation;
one of practical significance but also of artistic expression.

The same does not hold for audio processing. Editing and
manipulating complex audio signals presents a unique chal-
lenge to users - one that we don’t often encounter in other
forms of media. Whereas it is relatively simple for a user to
point towards specific objects in images and videos, doing
so in an audio track is not straightforward. Commonplace

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’09,, October 4–7, 2009, Victoria, British Columbia, Canada.
Copyright 2009 ACM 978-1-60558-745-5/09/10...$10.00.

0 1 2 3 4 5
Time (sec)

A
m

pl
itu

de

Figure 1: A waveform representation of a piece of mu-
sic audio. An experienced audio engineer would iden-
tify this sound as a piece of music, and would obtain a
sense of where the drum beats are, by observing the
sharp onsets. However the presence of the singer’s
voice, or any other instrument is not visually possible
to detect. Casual users often use this representation
to detect the start and end time of an audio track, but
cannot deduce much more information.

recordings such as music, or home video soundtracks are al-
most always composed out of superimposed sounds that oc-
cur simultaneously. Invariably though, a user is most inter-
ested in only editing one sound (e.g. the sneeze during the
piano concerto, or just the guitar in a music recording). The
fact that all these sounds are intertwined inside one wave-
form, presents a significant challenge in terms of a user in-
terface, since there is no clear way to select a specific sound.

This problem has been partially addressed by two distinct
fields, the field of audio visualization, and that of sound
source separation. In terms of audio visualization, makers of
audio processing software have spend significant resources
in visualizing audio in forms that help a user understand and
manipulate audio. The most widespread (and least informa-
tive) representation for audio is the trace of the actual air
pressure across time, which is often referred to as the wave-
form (figure 1). This provides highly accurate visualization
of sound, but unfortunately conveys a small amount of infor-
mation. An experienced user might be able to deduce some
basic information using this representation, but in the case
of most sound mixtures there is very little information to be
found.

In order to present users with more intuitive representations
of audio, especially ones that can assist complex editing, au-
dio software is now increasingly relying on time-frequency
visualizations (often referred to as frequency or spectral rep-
resentation). Time-frequency decompositions are a family of
numerical transforms that allow us to display any time series
(like sound) in terms of its time-varying frequency energy
content [1]. The most common of these representations is
the spectrogram, which one can readily find in many mod-
ern audio processing editors. More exotic time-frequency
transforms, such as wavelets, warped spectrograms and sinu-

F
re

qu
en

cy
 (

kH
z)

Time (sec)
0 1 2 3 4 5

0

1

4

20

Figure 2: A time-frequency representationof the sound
shown in figure 1. An experienced user would be able
to visually distinguish some of the constituent sounds.
The tall vertical columns represent some of the acous-
tic energy that belongs to a snare drum. The parallel
horizontal wavy tracks in the second half of the record-
ing represent a singers voice. The bass is responsible
for most of the pulsating pattern near the bottom of
this plot, and the guitar is made up from the shorter
vertical columns and the short parallel horizontal lines
that stem from them.

soidal decompositions have also been used, but they effec-
tively communicate the same information to a user. Com-
mon to all these visualizations is the ability to show how
much acoustic energy exists at a specific point in time and
frequency. Since different sounds tend to have different dis-
tributions along that space, it is often possible to visually dis-
tinguish mixed sounds using such a visualization. See figure
2 for a simple example of interpreting a time-frequency dis-
tribution of a musical audio clip. More exotic approaches,
such as visualizations of specific parameter estimates from
an audio stream (e.g. pitch, or formant structure), are also
used on occasion, however these representations are severely
limited and do not always produce reliable estimates when
analyzing overlapping sounds.

Although any of the representations we mentioned so far can
be very informative when one knows what to look for, they
still do not facilitate an object-based interaction with audio,
such as allowing a user to select and modify a single sound
from the mixture. An operation like this would be impos-
sible using the waveform representation due to the fact that
each time sample is a sum of multiple sounds. Using a time-
frequency representation, we can visualize sound objects, but
selecting one of them is a very tedious (if even possible) task
for a user. For example selecting the voice in the mixture in
figure 2, would involve selecting each of the parallel horizon-
tal lines that are elements of that sound. This presumes that
the user can identify which of these lines belong to the voice,
and not to the bass of the guitar; a daunting task even for a
seasoned expert.

Moving further away from the interface, towards an auto-
mated process, we find another approach to manipulate sin-
gle sounds in a mixture, the approach of automatically sepa-
rating sounds. The field of sound source separation tackles a
very challenging (and still an open) problem, which is that of
segmenting a mixture recording in multiple audio tracks that
isolate each constituent sound. These approaches work ei-
ther by taking advantage of spatial statistics in stereo or mul-
tichannel recordings, or in the case of single channel record-
ings, by employing elements of computational psychoacous-
tics, or by using pre-trained models of sounds that one de-
sires to extract (see [2] for an overview of the state of the art
in this field). In most of these cases the state of the art is
still in early stages of acceptable performance, and is usually

P(t | z =1)

P(f, t)

P(t | z =2)

P(f | z =1)
P(f | z =2)

P(z = 2)

P(z = 1)

Figure 3: An illustration of a PLCA analysis, on a sim-
plified spectrogram-type input. The input is composed
of two patterns, one being two parallel tracks with a
sharp onset that subsequently fade out, and the other
being three parallel tracks which increase in level and
then fade out again. Using a rank-2 decomposition
we obtain a succinct analysis of the input. The two
distributions P (f |z) describe the two vertical struc-
tures we see, their corresponding horizontal distribu-
tions P (t|z) show us how each P (f |z) is modulated
over time, and P (z) tells us how much these two ele-
ments are present overall.

burdened by the fact that it is very hard to reliably point an
algorithm towards the particular sound one is interested in.
Although in principle these approaches can be a great solu-
tion in assisting a user to interact with audio streams, given
their present limitations they are more likely to complicate a
sound selection interface, rather than make it seamless.

In this paper we will present a newway to interact with sound
mixtures, one that is not based on a graphical interface, or au-
tomated preprocessing, but one that allows a user to specify
a sound using audio guidance. We present a process which
can identify which elements of an audio mixture correspond
to a sound that the user provides, and then use this as a means
of selecting specific sounds from a mixture. This allows the
user to use a very intuitive way to specify sounds, which can
be as simple as vocalizing (whistling, or otherwise mimick-
ing) the sound that he/she desires to select. In the following
sections we present the details of the underlying process, and
results that validate its usefulness in this particular task.

SPECTRAL MODELS OF SOUNDS
In this section we will describe the basic model that we use to
represent sounds. We start with the introduction of a generic
model, and then subsequently add an extension of priors that
we can then use for the proposed interface.

Basic Model
The basic model we will use is the Probabilistic Latent Com-
ponent Analysis (PLCA) based on the work in [3]. This
is a simple spectral dictionary model which has been used
for various tasks involving mixture sounds. Intuitively this
model operates on the a spectrogram representation (such as
the one in figure 2), and learns an additive set of basis func-
tions that represent all the potential spectral profiles one ex-
pects to see from a sound. More specifically, assuming a
time-frequency magnitude distribution P (f, t), we decom-
pose it using:

P (f, t) ≈
∑

z

P (z)P (f |z)P (t|z). (1)

The model parameters P (f |z), P (t|z) and P (z), can be in-
terpreted as spectral bases, their temporal weights, and basis
priors respectively. All of these are indexed by a latent vari-
able z. More simply, P (f |z) defines elements we expect to
see in the vertical structure of the input (such as spectra),
P (t|z) is their corresponding amount of presence at each
time spot, and P (z) is their overall contribution (i.e. how
much presence of each spectral basis do we get for each value
of z). An illustration of this model is shown in figure 3.

Estimating this model is straightforward using the Expectation-
Maximization algorithm, and results in the following itera-
tive estimation equations:

P (z|f, t) =
P (z)P (f |z)P (t|z)∑
z P (z)P (f |z)P (t|z)

P (f |z) =
∑

t P (f, t)P (z|f, t)∑
f,t P (f, t)P (z|f, t)

P (t|z) =

∑
f P (f, t)P (z|f, t)

∑
f,t P (f, t)P (z|f, t)

P (z) =

∑
f,t P (f, t)P (z|f, t)

∑
z,f,t P (f, t)P (z|f, t)

.

As shown in [3], one can use this process to learn models of
individual sounds, and then use these models to extract such
sounds from amixture. This process involves learning a large
number of P (f |z) distributions from recordings of isolated
sound sources, and then trying to fit these distributions to an
input mixture (i.e. estimating only P (t|z) and P (z)). Upon
completion of the fitting process one can freely reconstruct
the parts of the input that correspond to a particular source,
by using only the distributions with the value of z that corre-
spond to the desired source.

Models with Priors
Unfortunately, the model shown in the previous section is
not of direct use for the problem we examine here. In order
to make it applicable we will introduce a priors extension
which will allow us to point towards a source with a high
precision, and also remove the requirement of performing an
offline estimation on a training data set.

The distributions P (f |z) and P (t|z) that we estimate in the
PLCA model are multinomial distributions. In this case, as
shown in [4] in a different but quite similar statistical model,
the Dirichlet distribution makes for an appropriate prior dis-
tribution. The resulting estimation equations for P (f |z) and
P (t|z) are changed only slightly by including a term that
blends the current estimate with the prior distribution. So for
P (f |z) we get:

P (f |z) =
∑

t P (f, t)P (z|f, t) + κα(f |z)∑
f,t P (f, t)P (z|f, t) + κα(f |z)

, (2)

and a similar expression for P (t|z). The distribution α is
the prior distribution, and the parameter κ decides howmuch
we want to impose the prior in the estimation process. When
κ = 0we effectively revert to the equation of the basic model
shown in the previous sections. This prior effectively biases
the results of the estimation of P (f |z) and P (t|z) so that
they tend to look more like α(f |z) and α(t|z). We will use
this property to employ the PLCA model with priors, for the
purposes of this paper.

MATCHING A USER INPUT TO A SOUND IN A MIXTURE
Now let us use the model we developed in the previous sec-
tions in order to help a user match a sound in a mixture. Con-
sider once again the mixture time-frequency distribution in
figure 2. We will refer to it as the mixture input Pm(f, t).
We know that upon analysis with the PLCA model some of
the resultingP (f |z) andP (t|z) distributions will correspond
to the source we are interested in, whereas the rest will de-
scribe the remainder of the input mixture. As it is, there is
no way to know which components will correspond to the
sound we wish to select. We will therefore require that the
user provide a sound (whose time-frequency distribution we
denote as Pu(f, t)), that is similar to the target and will used
as a reference. This does not have to be an exact replica-
tion, but rather a rough approximation. An example might
be the user singing or whistling the desired part. We will
analyze Pu(f, t) with a PLCA model and from it extract a
set of spectral components Pu(f |z) and their corresponding
temporal weights Pu(t|z). We will then analyze the mixture
Pm(f, t) using a PLCA with priors model, this time asking
for more components than we used to analyze the user pro-
vided sound. We will use the already learned components
from the user provided sound (Pu(f |z) and Pu(t|z)) as pri-
ors for an equal number of components of the mixture, and
we will estimate the rest of the mixture components without
priors. This process ensures that the components with the
priors will latch on to a sound that is similar in spectral and
temporal characteristics to the user-provided sound, whereas
the rest of the componentswill explain the remaining sounds.
We will start with a large bias parameter κ, and then as the
estimated distributions converge we can slowly relax that pa-
rameter towards zero. The entire process can run faster than
real-time and is briefly summarized as:
• Compute time-frequency distributions Pu(f, t) from the
user-provided input, and Pm(f, t) from the mixture sound.

• ObtainN components,Pu(f |z) andPu(t|z), fromPu(f, t)
using PLCA.

• Obtain N + M components from Pm(f, t)
– First N components use Pu(f |z) and Pu(t|z) as priors,
with a κ relaxing towards zero during later iterations

– Remaining components are trained without priors
At the end of this process we can compute the contribu-
tion of the desired source sound in the time-frequency space
by resynthesizing using only the prior-biased components,
whereas the rest of the components will describe the remain-
ing sounds:

Pdesired(f, t) ≈ ∑N
z=1 P (z)P (f |z)P (t|z)

Premainder(f, t) ≈ ∑N+M
z=N+1 P (z)P (f |z)P (t|z)

After this stage the user is free to resynthesize these sources
by inverting the time-frequency decomposition as shown in
[3], or otherwise process only the time-frequency elements
he/she desires. In figure 4 we show an example of this pro-
cess operating on the mixture shown in figure 2. The user
provided a singing of the lead part, which was then used to
select only the time-frequency elements that correspond to
the singer’s part in the mixture.

EXPERIMENTAL VALIDATION
This particular method enables a user to perform an ac-
tion which would otherwise be impossible to achieve using
graphical user interfaces. The two elements we need to con-
sider in evaluating this process as a viable interface, is how
accurate it in isolating elements of the desired sound, and

Time (sec)

F
re

qu
en

cy
 (

kH
z)

User−provided sound input

0 1 2 3 4 5
0

1

4

20

F
re

qu
en

cy
 (

kH
z)

Time (sec)

Selection from mixture

0 1 2 3 4 5
0

1

4

20

F
re

qu
en

cy
 (

kH
z)

Time (sec)

Remainder from mixture

0 1 2 3 4 5
0

1

4

20

Figure 4: Results from selecting the vocal track from
figure 2. The top figure displays the time-frequency
distribution of the user input, the middle figure plots
the resulting selection given the user guidance, and
the third figure plots what remains from the input once
the selection is extracted.

what are the tolerances in variance when it comes to the user-
provided input. In order to evaluate these two parameters we
run three sets of experiments.

For the first experiment we artificially mix speech signals
with background music and use the original speech signals
as a guide for selecting the speech inside the mixture. This
kind of test is known as an oracle case and creates a best case
scenario which can reveal the upper performance limits of
this approach. For the second experiment we used a simi-
lar methodology, but instead of providing the actual speech
signal in the recording, that particular speech was uttered by
a different speaker of the same gender, attempting to match
the speech in the recording. In the third experiment we use a
speaker of different gender from the one in the recording. In
order to quantify the quality of the sound selection, we use
three performance measures, the Signal to Interference Ratio
(SIR), the Signal to Distortion Ratio (SDR) and the Signal to
Artifacts Ratio (SAR) as proposed in [5]. We averaged these
measures from 50 runs of each experiment. The results are
shown in the following table:

Oracle Same Different
Metric Case Gender Gender
SIR 36.2 dB 13.4 dB 8.3 dB
SDR 11.1 dB 2.7 dB 1.3 dB
SAR 11.2 dB 7.4 dB 3.8 dB

The oracle case results produce audibly perfect selection of
the desired sound. The same gender results are also very
good in terms of selecting the right sound, but as expected
not as accurate as in the oracle case. Finally the different

gender case results in slightly worse performance metrics,
although it provides a very acceptable degree of distinction
between sounds which rivals modern sound separation algo-
rithms. Regardless of the above performance metrics how-
ever, the principal application of this approach is to enable
a user to select a single sound from a mixture and not to
separate it. In most practical scenarios the user will seek to
process only one sound out of many (e.g. changing its stereo
position, or adding a sound effect) and then keep that sound
in the mixture. In such situations it is possible to tolerate
comparatively much poorer performance than the one we re-
ported, since processing defects can easily stay undetected
by a human listener in the presence of the overall sound mix-
ture.

This technique is not particularly bound to speech signals.
We demonstrate its performance on speech due to conve-
nience and easy access to such a corpus, but that approach
can be applied to any kind of sound mimicked appropriately.
Although it is hard to quantify the performance, using vari-
ous real-world recordings we have successfully selected gui-
tars using vocalization, solo guitars using whistling, drum
patterns using beatboxing, etc. The only requirement is that
the user-provided sound correlates stronger with the target
than the non-targets in either spectral content or temporal ac-
tivity. This means that selecting one violin from an orchestra
playing in unison is not possible, but it still offers a reason-
able solution to a large number of situations with multiple
uncorrelated sounds.

CONCLUSIONS
In this paper we presented a new approach to selecting spe-
cific sounds from recordings of dense mixtures, a process
that is well accepted as impossible to perform with the cur-
rent state of the art in audio editing software. The user is
asked to produce a sound that relates to the source they wish
to select, and an automatic process matches the user’s input
to the most appropriate sound in the mixture. We have shown
that the computational implementation that we employ, when
provided with a reasonably appropriate user input, can per-
form a very good job in isolating specific sounds. This vali-
dates that this computational core is a promising tool to em-
ploy in designing audio driven interfaces for audio editors.

REFERENCES
1. Flandrin, P. 1999. Time-Frequency/Time-scale Analysis,
inWavelet Analysis and Its Applications series, Academic
Press; ISBN 978-0-12-259870-8.

2. Makino, S., T-W. Lee, H. Sawada (eds.) 2007. Blind
Speech Separation, in Signals and Communication Tech-
nology Series, Springer, ISBN: 978-1-4020-6478-4.

3. Smaragdis, P. Raj, B. and Shashanka, M.V. 2007. Super-
vised and Semi-Supervised Separation of Sounds from
Single-Channel Mixtures. In proceedings of ICA2009.
London, UK. September 2007.

4. Blei, D., Ng, A., Jordan, M. 2003. Latent Dirichlet allo-
cation. in Journal of Machine Learning Research 3: pp.
9931022. doi:10.1162/jmlr.2003.3.4-5.993.

5. Févotte, C., R. Gribonval and E. Vincent. 2005. BSS
EVAL Toolbox User Guide, IRISA Technical Report
1706, Rennes, France, April 2005.

